Targeted Disruption of Ephrin B1 in Cells of Myeloid Lineage Increases Osteoclast Differentiation and Bone Resorption in Mice
نویسندگان
چکیده
Disruption of ephrin B1 in collagen I producing cells in mice results in severe skull defects and reduced bone formation. Because ephrin B1 is also expressed during osteoclast differentiation and because little is known on the role of ephrin B1 reverse signaling in bone resorption, we examined the bone phenotypes in ephrin B1 conditional knockout mice, and studied the function of ephrin B1 reverse signaling on osteoclast differentiation and resorptive activity. Targeted deletion of ephrin B1 gene in myeloid lineage cells resulted in reduced trabecular bone volume, trabecular number and trabecular thickness caused by increased TRAP positive osteoclasts and bone resorption. Histomorphometric analyses found bone formation parameters were not changed in ephrin B1 knockout mice. Treatment of wild-type precursors with clustered soluble EphB2-Fc inhibited RANKL induced formation of multinucleated osteoclasts, and bone resorption pits. The same treatment of ephrin B1 deficient precursors had little effect on osteoclast differentiation and pit formation. Similarly, activation of ephrin B1 reverse signaling by EphB2-Fc treatment led to inhibition of TRAP, cathepsin K and NFATc1 mRNA expression in osteoclasts derived from wild-type mice but not conditional knockout mice. Immunoprecipitation with NHERF1 antibody revealed ephrin B1 interacted with NHERF1 in differentiated osteoclasts. Treatment of osteoclasts with exogenous EphB2-Fc resulted in reduced phosphorylation of ezrin/radixin/moesin. We conclude that myeloid lineage produced ephrin B1 is a negative regulator of bone resorption in vivo, and that activation of ephrin B1 reverse signaling inhibits osteoclast differentiation in vitro in part via a mechanism that involves inhibition of NFATc1 expression and modulation of phosphorylation status of ezrin/radixin/moesin.
منابع مشابه
Transgenic Overexpression of Ephrin B1 in Bone Cells Promotes Bone Formation and an Anabolic Response to Mechanical Loading in Mice
To test if ephrin B1 overexpression enhances bone mass, we generated transgenic mice overexpressing ephrin B1 under the control of a 3.6 kb rat collagen 1A1 promoter (Col3.6-Tg (efnb1) ). Col3.6-Tg (efnb1) mice express 6-, 12- and 14-fold greater levels of full-length ephrin B1 protein in bone marrow stromal cells, calvarial osteoblasts, and osteoclasts, respectively. The long bones of both gen...
متن کاملConditional disruption of calcineurin B1 in osteoblasts increases bone formation and reduces bone resorption.
We recently reported that the pharmacological inhibition of calcineurin (Cn) by low concentrations of cyclosporin A increases osteoblast differentiation in vitro and bone mass in vivo. To determine whether Cn exerts direct actions in osteoblasts, we generated mice lacking Cnb1 (Cn regulatory subunit) in osteoblasts (DeltaCnb1(OB)) using Cre-mediated recombination methods. Transgenic mice expres...
متن کاملTitle: Bone Strength in TLR4 Pathway Deficient Mice
Bones are formed from a combination of collagen and minerals, primarily calcium and phosphate salts. One of the cells in bone is the osteoclast that resorb (i.e., remove) preexisting bone, a process essential for bone development and adaptability. This cell belongs to the macrophage lineage of cells, and has its origin in the marrow. In diseases such as osteoporosis, the healthy balance of adul...
متن کاملHypoxic regulation of osteoclast differentiation and bone resorption activity
Bone integrity is maintained throughout life via the homeostatic actions of bone cells, namely, osteoclasts, which resorb bone, and osteoblasts, which produce bone. Disruption of this balance in favor of osteoclast activation results in pathological bone loss, which occurs in conditions including osteoporosis, rheumatoid arthritis, primary bone cancer, and cancer metastasis to bone. Hypoxia als...
متن کاملTargeted Overexpression of Osteoactivin in Cells of Osteoclastic Lineage Promotes Osteoclastic Resorption and Bone Loss in Mice
This study sought to test whether targeted overexpression of osteoactivin (OA) in cells of osteoclastic lineage, using the tartrate-resistant acid phosphase (TRAP) exon 1B/C promoter to drive OA expression, would increase bone resorption and bone loss in vivo. OA transgenic osteoclasts showed ∼2-fold increases in OA mRNA and proteins compared wild-type (WT) osteoclasts. However, the OA expressi...
متن کامل